If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54t^2-384=0
a = 54; b = 0; c = -384;
Δ = b2-4ac
Δ = 02-4·54·(-384)
Δ = 82944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{82944}=288$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-288}{2*54}=\frac{-288}{108} =-2+2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+288}{2*54}=\frac{288}{108} =2+2/3 $
| 9y+68=5y | | 2=1/3+b | | 5^(2x-5)=125 | | |3x+9|=6 | | -23x+4=13 | | x+4/7=5/6 | | 3a^2+4a=1 | | (3x-4)=(6x+22) | | 2l-5=-5 | | -25=1/5d+5 | | Sx5-30=45 | | 12-x=-5x+20 | | 3a+11=7a=13 | | 64x=99 | | 0.7(-0.24+6x)=4.9x | | 3z/89=1 | | (21x)^2*(9x)^2=29^2 | | 100+45+x=180 | | 5x+3x+2x=180 | | 3.2x-13=1.7x+5 | | 7s+7-38=165 | | -2(2–2x)=4–8(1–x) | | 5x-7-2x=7x-15-4 | | 0=(2y-1(8-y) | | 3x=12-12-12-x-x | | 5-12=3x-3x-4x-3x-3x | | 6(d-4)=60 | | 4x-12=3x-3x-4x-4x-4x-4x | | 12x=-25 | | 4^4x+3=16^x+1 | | 8+6/8+6b=2/4+16b-7 | | (6x-3)(9x+4)=0 |